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High-temperature series for classical n-vector models with 
general anisotropy 
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Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, New York 14853, 
USA 

Received 19 May 1975 

Abstract. A compact parametrization is derived for the high-temperature series expansions 
of the free energy and two-spin correlation function of classical n-vector models with com- 
pletely general anisotropic pair interactions. The number of independent coefficients 
needed for general anisotropy is much less than required in conventional expansions. The 
series for the free energy of the Heisenberg model (n = 3) on three cubic lattices is presented 
to tenth order as an example. 

1. Introduction and summary 

In the past high-temperature series have been derived for a large number of lattice 
spin models$. In this note we use a method for calculating graphical weights (Gerber 
and Fisher 1975) to obtain a compact parametrization for many of these series. The 
Hamiltonian which applies to a large class of classical n-vector models has the reduced 
form 

where j = (k,T)- '. The si = (s!, . . . , sl) are n-component classical spins located on the 
sites of a lattice. The quantity fJ is an n x n matrix which specifies the anisotropic 
nature of the bilinear coupling between the pairs ( i , j )  of neighbouring spins. The 
second term in (1.1) allows for an arbitrary spin length weighting factor of the form 
exp[ - w(lsl *)I for each spin. This Hamiltonian includes many of the previously treated 
spin models such as the Ising model (n = I), the fixed length plane rotator and X - Y  
models (see, eg, Ferrer et al 1973). Since we may consider the Ising model for arbitrary 
spin S as an n = 1 model with a spin-weight factor composed of a series of delta func- 
tions, the Hamiltonian (1.1) also describes these models. The models for which our 
parametrization is most useful are anisotropic models, eg the Heisenberg (n = 3) model, 
which for some cases of anisotropy have been analysed by Pfeuty et al(1974) and which 
have the general Hamiltonian 

Present address : School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton 
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1 For an extensive review of high-temperature expansions see the volume edited by Domb and Green (1974). 
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where fixed length spins Is1 = 1 have been assumed. The high-temperature expansion 
for the free energy may be written 

The lth-order coefficient b, is a homogeneous polynomial of order 1 in the anisotropy 
parameters g, in (1.2). In order to write down this polynomial one is required to specify 
its roughly 312, apparently independent, coefficients for the most general case. The 
method for calculating the series (1.3), which we derive in 0 2, expresses the coefficients 
bl only in terms of the power traces or moments 

u k  Tr(Ok) for 2 < k < 1. (1.4) 

The possibility of such a result might well have been expected on symmetry grounds. 
For the anisotropic Heisenberg model (1.2) the u k  are simply given by the power sums 

u k  = 81: + gi  + (1.5) 

The coefficient b, is found to be a linear combination of products of the form 

The set { k i }  consists of positive integers k,. A particular value of k, can, of course, 
appear several times in the set { k i } .  The linear combination of u(1, {k,}) which deter- 
mines b, has the form 

(1.7) 

The labels of the B l { k i }  listed in the tables of the appendix provide examples of allowed 
sets {k,). Because of the condition Ck, = 1 the number of coefficients B l { k i )  in a given 
order I is considerably smaller than the roughly ) I 2  coefficients needed when b, is 
represented as a homogeneous polynomial in the gi .  The number of Bl{k i }  can be 
further reduced for certain lattices since only those values of k, are allowed for which a 
closed k,-step polygon occurs on a lattice. Hence generally k ,  = 1 never occurs, and 
for loose-packed lattices the ki must be all even. As an example we mention that the 
coefficient b l0  requires about fifty coefficients in the conventional polynomial representa- 
tion, whereas the number of non-vanishing coefficients B l O { k i }  in (1.7) is twelve for 
close-packed lattices (with triangles, pentagons, etc) but only seven for loose-packed 
lattices. The number of coefficients B , { k i }  is furthermore independent of the number 
of components n, whereas their values depend on n as well as on features of the spin- 
weight factor. 

The spin-weight factor exp[ - w(ls12)] in equation (1.1) enters the expansion to lth 
order only through the reduced spin moments of the form 

where the non-interacting ( T  = 00) spin moments are defined by 

J : S P + n - l  e-W(S2)dS 

l: sn- ' e- w ( s 2 '  ds (ISlP>o = (1.9) 
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and the simple combinatorial factors are 

Q(2m, n) = r(+n)/T(m + +n). (1.10) 

In practical expansions it is convenient to normalize the interaction strength (see 
Gerber and Fisher 1975) by setting 

R = K(lsl2)o/n.  (1.11) 

In terms of the anisotropy traces uk and spin momentsf,(n) defined above, we may 
write an expansion for the free energy on a general lattice by introducing the lattice 
constants pi, for closed graphs of i bonds (see appendix 111, table A of Domb 1960) 
and pi.j for open graphs of i bonds (where i j corresponds to the labels ( i s  j) in table B 
of appendix I11 of Domb 1960). We find the result to be 

- bF(K) = +pi .1u2R2 + P3u3R3 + R4{ U4b4 +ippl .1f2(n)2 ++p2.1f2(n)) 

+ u 3 h  . 1 ( f 2 W 2  - 1) + 9 2  .l(fAn) - 1)I) + R5{~sbs + 3p3f2(n12 

+ P4. tf2(n)) + u3u2[ip3(f2(n)2 - l)  + &pp4.1(f2(n) - I)]) f o(R6).  (1.12) 

The derivation of this result utilizes the recursion relation method introduced by 
Stanley and Kaplan (1966) (Stanley 1974); it is presented in 9 2. The explicit series in 
terms of the variable K for the Heisenberg model with ( 1 ~ 1 ~ ) ~  = 1 on the three cubic 
Bravais lattices are tabulated in the appendix to tenth order in K. 

The high-temperature expansion of the two-spin correlation function between spins 
at sites i and j may be expressed as 

m 

(1.13) 

where the matrix l? specifies the particular combination of correlations (s4sf) of interest. 
The corresponding expansion coefficient aij,[(i?) can be written in equally transparent 
form. The only new quantities which enter are the modified traces 

r,, = Tr(fi@’). (1.14) 

The index p runs from a minimal value pmin equal to the smallest number of steps by 
which one can reach sitej from site i ,  to a maximal value pmax = I (one may have pmin = 0). 
The coefficient aij,[(l?) in (1.13) is again a linear combination of products similar to (1.6), 
namely 

(1.15) 

The index set {k,) now obeys the expected relation 

p + p ,  = I (1.16) 

where, as before, the same positive number k can appear several times in { k , } .  This 
condition likewise reduces the number of coefficients Aij,f(p, { k q } ,  l?) to a conveniently 
small value. Using the same notation as in (1.12) the reduced susceptibility 

4 

x o ( R  k,T2X(@/” 
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may be written 

X O ( ~ ) ~ / ( l ~ l 2 > O  = ro + 2 r 1 p 1 . 3  + R2[r2(2p2.1 + 2p,.,f,(nN + roU2P1.1(f2(4 - 1 )I 
+ R3 {r3(2p3.2 + 6p3f2(n) +4p2.if2(n) 

+ r1 U2[2P,. l ( f 2 W  - 1) + P1. l(f2(n)2 - 111 
+roU33h[h(n) -  11) +0(K4). (1.17) 

The main steps of the derivation of this form are presented in 9 3. We have not, so far, 
derived the correlation series to the same high order as the free energy series. 

It is clear that from expansions like (1.12) and (1.17), one can immediately obtain 
series for any quantity which is derived from the free energy or correlation function by 
taking derivatives with respect to K or any parameter occurring in the matrix 0. This 
includes in particular the specific heat, anisotropy susceptibilities (Pfeuty et a1 1974) etc. 
In addition, by using the explicit correspondence between the limit n + 0 and the 
problem of interacting random walks (Gerber and Fisher 1975) and setting ri = 1 
and ui = 0, we can obtain from (1.13) and (1.17) various generating functions for inter- 
acting random walks. The weight factors f, defined in equation (1.8) must then be 
reinterpreted as the Boltzmann factors for an (m - 1)-fold self-intersection of a walk at 
a given vertex as explained in Gerber and Fisher (1975) (see also Jasnow and Fisher 
1975). 

2. Free energy expansion 

Starting with the Hamiltonian (1.1) we follow the procedure developed by Stanley 
and Kaplan (1966) (Stanley 1974) and construct a high-temperature expansion for the 
free energy in the form 

00 1 
-F(K) /k ,T  = lim -Tr(e-8") = C bIK1. 

N+m N 1=0 

The coefficients bI may be written as a sum of contributions of the form 

where the sum runs over multigraphs GI (Essam and Fisher 1970) with 1 bonds (counting 
multibonds with appropriate multiplicity) which (i) are connected and (ii) have only 
vertices of even degree (Stanley 1974). The quantity (G, U )  denotes the weak lattice 
constant per site (Essam and Fisher 1970) of the graph G on the lattice U. The graphical 
weights B obey recursion relations in terms of proper subgraphs Gk of G1 which fulfil 
the same conditions as  G I .  If G I - k  denotes the complementary subgraph of I- k lines 
the recursion relations are 

(2.3) 

as shown by Stanley and Kaplan (1966) (Stanley 1974). The graphical weights M which 
enter here are defined through the averages 

(2.4) 
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defined in analogy to (1.9). In this expression the product runs over all pairs of vertices, 
labelled by i and j, of the graph G and the multiplicity of the bond joining the two 
vertices i and j is denoted by mij. 

In order to calculate these M weights or equivalently the P weights, 

(2.5) 

we utilize a reduction formula for vertex weights which was derived recently (Gerber 
and Fisher 1975). The basic integral required for a single selected spin s, 'coupled' to 
2m adjacent spins s j  is 

where 

and where d q s )  denotes the surface element of an n-dimensional unit sphere of surface 
w,. This integral may be reduced to a sum over all distinct pairings of the 2m spins s j  
coupled to s, into m pairs with indices M2j- l), p(2j)l with j = 1, . . . , m. There are a 
total of (2m)!/2"m! such distinct pairings. The reduction formula proved in Gerber 
and Fisher (1975, see explicitly equations (29)-(33) and the appendix) is then 

(2.8) 
We now apply this reduction formula to each vertex of valence 4 or more in a 

graph G I .  Each distinct set of choices of pairings then yields a decomposition of the 
graph G into a set of closed, effectively non-intersecting polygons (see figure 1). If the 
number of bonds in the ith polygon of this set is k i  we may describe the set by the set 
{ k i } .  The relation 

C k i = l  

is, of course, satisfied since each of the 1 bonds of GI appears in one and only one polygon 
of the decomposition. The reduction formula then states that the contribution of a 
particular selection of pairings (ie a particular polygonal decomposition) is simply equal 
to the product of P weights of the constituent polygons. In addition each vertex i of 
GI contributes a factorf,,(n) which accounts for its multiplicity. 

The P weight of a k-step polygon pk is readily found to be 

(2.10) 

where the basic power traces uk are as defined in (1.4) (see equation (30) of Gerber and 
Fisher 1975). The particular polygonal decomposition under consideration then gives 
a contribution 

(2.1 1) 



High-temperature series for classical n-vector models 1793 

= * 0 + (AA) 

Figure 1. Polygonal decompositions of a free energy graph G ,  with one vertex of multi- 
plicity 4 and of a correlation function graph C :  with two vertices of multiplicity 4. One 
obtains the .decomposition numbers c (G, ,  1,) = 2 and C ( G , , ~ ~ )  = 1 (see (2.12)); and 
c(G:', 5) = 6, c(G:', 3, 12) = 1 and c(C:', 2, la)  = 2 (see (3.4)). 

to the total weight. Summing over all polygonal decompositions and taking into account 
the vertex-weighting factors fm(n) yields the final expression 

(2.12) 

where the basic decomposition numbers c(G,, { n k } )  of the graph GI represent the number 
of times the polygonal decomposition procedure leads to exactly n,  two-step polygons, 
n3 three-step polygons, and so on. From equation (2.1 1)  we have a necessary condition 
for a non-vanishing c(G,, { n,}), namely 

knk = 1. (2.13) 

This is identical with the original condition (2.9). The evaluation of the B weights in 
equation (2.2) by using the recursion relations (2.3) is a straightforward but tedious 
business. It is clear from (2.3) and (2.12), however, that the only parameters in the high- 
temperature expansion of the free energy in Ith order which refer to a particular matrix 
0 are the products (1.6) or equivalently the products 

n (2.14) 

where the {nk) satisfy (2.13). This parametrization is the one exhibited in equation 
(1.12) and used in the appendix for the Heisenberg model. 

k 

k 

3. Two-point correlation function 

The procedures for calculating high-temperature expansions for the correlation functions 
(Stanley 1974) follow closely those for the free energy expansion. We consider the 
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correlation of two spins at sites i and j determined by a matrix I? through (1.13). The 
expansion coefficients uij,,(l?) in (1.13) may again be written as a sum of the form 

(3.1) U i j , , ( R )  = 1 (G:, YpJ(fi, 0, G:). 
G: 

The sum now runs over all the graphs G: which (i) are connected and (ii) have precisely 
two vertices of odd degree (as indicated by the superscript 2). The weak lattice constant 
(G;,YYj  obeys the additional constraint that the two odd vertices of C: have to be 
located at the sites i and j of the lattice. The A" weights obey the recursion relations 
(Stanley and Kaplan 1966, Gerber and Fisher 1974) 

where again the sum runs over all proper subgraphs C; of G: which fulfil the same 
conditions as G: and which have complementary subgraphs G1-k with only even 
vertices. The M weights are the same as defined in (2.4) but the N weights are defined 
by 

The subscripts 0 and 1 label the two odd vertices and the rest of the notation is as in 
(2.4). The method used to evaluate the P weights in (2.5) can similarly be applied to 
the N weights. It is convenient to add to the graphs G: a 'wavy' line joining the two 
odd vertices. This line represents the matrix fi and augments the graph G: to one 
G:+ having only even vertices. If one applies the polygonal decomposition procedure 
described in 0 2 to the graphs G:+ (see figure l), one always obtains one polygon (of 
say p +  1 steps) which contains the wavy line and hence gives an expectation value of 
( < l ~ l ' > ~ / n ) ~ +  ' r P  (compare with (1.14)) and several polygons of only 0-type (straight) 
lines with expectation values given by (2.10). Summing over all the polygonal decompo- 
sitions of G:' as outlined in 0 2 then gives the final expression 

The basic decomposition numbers c(G:+, p ,  (nk}) for the graph G:+ now represent the 
number of times the polygonal decomposition procedure, applied to G:+, leads to a 
(p + 1)-step polygon containing the wavy line, and n, two-step polygons, n3 three-step 
polygons, etc, with only 0-type lines. The range of allowable p values has been men- 
tioned after equation (1.14) and the n k  fulfil the condition 

which is equivalent to (1.16). The products over vertex pairs ( i , j )  in (3.4) take care of 
the combinatorial factors arising from multibonds of 0-type lines with multiplicity mij. 
For the product of vertex weights f&) the multiplicity of the originally odd vertices 
has to be increased by one due to the wavy line. The m thus satisfy the relation 

1 mi = 2(I+ 1). (3.6) 
i 

From (3.4) and (3.2) it is clear that the Ith-order coefficient in the expansion (1.13) 
has, in fact, the compact parametrization in terms of the rl and U k  explained in 1 (see 
(1.15)). The expansion (1.17) illustrates the type of results obtainable by this method. 



High-temperature series for classical n-vector models 1795 

Acknowledgments 

The author thanks Professor D D Betts for providing several lattice constants, Professor 
D Jasnow for making his series available for checking purposes and Professor M E 
Fisher for valuable comments on the manuscript. The award of a maintenance grant 
by the Swiss National Science Foundation and partial support by the National Science 
Foundation, in part through the Materials Science Center at Cornel1 University, are 
gratefully acknowledged. 

Appendix. Expansion coeffcients for the free energy 

Coefficients B,{k i ) ,  defined in (1.7) and (1.6) for the free energy of the classical Heisenberg 
model (n = 3, unit spins) on three cubic lattices (FCC : face-centred cubic; BCC : body- 
centred cubic ; sc : simple cubic). The numbers in brackets are decimal exponents. 

Table 1. 

f 
A 
6.58518Sm ( -  1) 

- 8.74O740%6 ( - 2) 
1.319506173 (0) 

- 2,291 358025 ( - 1) 
3.081805773 (0) 

-6.375839422 ( -  1) 
- 1.478408779 ( -  1) 

4.396920579 ( - 2) 
7,572679376 (0) 

- 1.580881 162 (0) 
-8.184460681 (-1) 

1,993476106 ( -  1) 
1,962135434 (1) 

-4.360514192 (0) 
-2.013883867 (0) 
- 1.127717514 (0) 

6.130529978 ( -  1) 
2.912761755 ( -  1) 

- 2.823633530 (- 2) 

5.282115545 (1) 
- 1.240611433 (1) 
- 5.528904338 (0) 
-5.530815271 (0) 

1.694740776 (0) 
1.761424967 (0) 
1.383532334 ( -  1) 

- 1.843480227 ( -  1) 
1467127366 (2) 

-3.651916018 (1) 
- 1.566748493 (1) 
- 1.514197921 (1) 

5.136692327 (0) 
- 6.751609252 (0) 

4.778567395 (0) 
2.632672094 (0) 
1.238664169 (0) 

-6.016064197 (- 1) 
-4.349393303 ( -  1) 

2.070637041 ( -  2) 

Table 2. 

~~ 

B2{2) d t 
B4{4} 2.562962m (- 1) 9.592592m (- 2) 
B4{2, 2) - 3.851851851 (- 2) - 2.148148m (- 2) 
B6{6) 5.378931 161 ( -  1) 1.044035721 ( -  1) 
B6{4, 2) - 1.628353070 (- 1) -4.363147728 (-2) 
B6{2, 292) 1.273275291 (-2) 5.238375185 (-3) 
Bd8)  1.486407727 (0) 1326224518 ( -  1) 
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Table 2.+continued) 

BCC sc 

-4,968194171 (-1) 
- 1.669375288 ( -  1) 

1.026532814 (- 1) 
- 5.359844971 ( -  3) 

4.818536169 (0) 
- 1.806028785 (0) 
-9.999805315 ( -  1) 

3.826003630 ( -  1) 
2.551331016(-1) 

-6.599351467 (-2) 
2.573781668 (-3) 

-6~910300010 (-2) 
- 2.146338568 (-2) 

1.984829839 (-2) 
-1.618622099 (-3) 

2.630251496 ( -  1) 
- 1.331792208 ( -  1) 
- 6.670382897 ( -  2) 

3.839992690 ( -  2) 
2.336734209 (- 2) 

- 9.238279823 ( - 3) 
5,687735907 ( -  4) 
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